Premium
Cellular cholesterol regulates MT1 MMP dependent activation of MMP 2 via MEK‐1 in HT1080 fibrosarcoma cells
Author(s) -
Atkinson Susan J.,
English Jane L.,
Holway Nicholas,
Murphy Gillian
Publication year - 2004
Publication title -
febs letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.593
H-Index - 257
eISSN - 1873-3468
pISSN - 0014-5793
DOI - 10.1016/j.febslet.2004.04.040
Subject(s) - ht1080 , matrix metalloproteinase , fibrosarcoma , protein kinase a , chemistry , secretion , microbiology and biotechnology , proteolysis , biochemistry , phosphorylation , mapk/erk pathway , kinase , cell , biology , enzyme , genetics
Unstimulated human fibrosarcoma cells (HT1080) constitutively secrete matrix metalloproteinase 2 (MMP 2) as a proenzyme requiring proteolytic cleavage by membrane type‐1 MMP (MT1 MMP) for activation. Physiological and pharmacological stimuli induce clustering of MT1 MMP/tissue inhibitor of MMP 2 “receptors”, promoting binding and activation of MMP 2. We now report that cholesterol depleted HT1080 cells accumulated MT1 MMP on the cell surface and activated MMP 2. A specific inhibitor of mitogen activated protein kinase kinase 1/2 inhibited both MMP 2 activation and extracellular signal‐related kinase phosphorylation induced by cholesterol depletion. Our data indicate that the cholesterol content of unstimulated cells is critical for secretion of MMP 2 as an inactive zymogen and control of pericellular proteolysis.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom