
Training very large scale nonlinear SVMs using Alternating Direction Method of Multipliers coupled with the Hierarchically Semi-Separable kernel approximations
Author(s) -
Stefano Cipolla,
Jacek Gondzio
Publication year - 2022
Publication title -
euro journal on computational optimization
Language(s) - English
Resource type - Journals
eISSN - 2192-4414
pISSN - 2192-4406
DOI - 10.1016/j.ejco.2022.100046
Subject(s) - support vector machine , kernel (algebra) , nonlinear system , kernel method , scale (ratio) , computer science , mathematical optimization , radial basis function kernel , artificial intelligence , mathematics , algorithm , pattern recognition (psychology) , discrete mathematics , physics , quantum mechanics