Structural Mechanism for GSDMD Targeting by Autoprocessed Caspases in Pyroptosis
Author(s) -
Kun Wang,
Qi Sun,
Xiu Zhong,
Mengxue Zeng,
Huan Zeng,
Xuyan Shi,
Zilin Li,
Yupeng Wang,
Qiang Zhao,
Feng Shao,
Jingjin Ding
Publication year - 2020
Publication title -
cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 26.304
H-Index - 776
eISSN - 1097-4172
pISSN - 0092-8674
DOI - 10.1016/j.cell.2020.02.002
Subject(s) - pyroptosis , caspase , inflammasome , cleavage (geology) , microbiology and biotechnology , biology , caspase 1 , biochemistry , biophysics , apoptosis , programmed cell death , receptor , paleontology , fracture (geology)
The pyroptosis execution protein GSDMD is cleaved by inflammasome-activated caspase-1 and LPS-activated caspase-11/4/5. The cleavage unmasks the pore-forming domain from GSDMD-C-terminal domain. How the caspases recognize GSDMD and its connection with caspase activation are unknown. Here, we show site-specific caspase-4/11 autoprocessing, generating a p10 product, is required and sufficient for cleaving GSDMD and inducing pyroptosis. The p10-form autoprocessed caspase-4/11 binds the GSDMD-C domain with a high affinity. Structural comparison of autoprocessed and unprocessed capase-11 identifies a β sheet induced by the autoprocessing. In caspase-4/11-GSDMD-C complex crystal structures, the β sheet organizes a hydrophobic GSDMD-binding interface that is only possible for p10-form caspase-4/11. The binding promotes dimerization-mediated caspase activation, rendering a cleavage independently of the cleavage-site tetrapeptide sequence. Crystal structure of caspase-1-GSDMD-C complex shows a similar GSDMD-recognition mode. Our study reveals an unprecedented substrate-targeting mechanism for caspases. The hydrophobic interface suggests an additional space for developing inhibitors specific for pyroptotic caspases.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom