z-logo
open-access-imgOpen Access
Blocking HbS Polymerization in SCD
Author(s) -
Guillaume Lettre
Publication year - 2020
Publication title -
cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 26.304
H-Index - 776
eISSN - 1097-4172
pISSN - 0092-8674
DOI - 10.1016/j.cell.2020.01.019
Subject(s) - hemolysis , biology , polymerization , deoxygenation , point mutation , hemoglobin , mutation , gene , immunology , microbiology and biotechnology , biochemistry , polymer , catalysis , chemistry , organic chemistry
Sickle cell disease (SCD) is caused by a point mutation in the β-globin gene that creates hemoglobin S (HbS). Upon deoxygenation, HbS forms long polymers that distort the shape of red blood cells, causing hemolysis and vaso-occlusion. Voxelotor inhibits HbS polymerization, the root cause of SCD complications. To view this Bench to Bedside, open or download the PDF.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom