Genome-Scale Identification of Essential Metabolic Processes for Targeting the Plasmodium Liver Stage
Author(s) -
Rebecca R. Stanway,
Ellen Bushell,
Anush Chiappino-Pepe,
Magali Roques,
Theo Sanderson,
Blandine FrankeFayard,
Reto Caldelari,
Murielle Golomingi,
Mary Nyonda,
Vikash Pandey,
Frank Schwach,
Séverine Chevalley,
Jai Ramesar,
Tom Metcalf,
Colin Herd,
PaulChristian Burda,
Julian C. Rayner,
Dominique SoldatiFavre,
Chris J. Janse,
Vassily Hatzimanikatis,
Oliver Billker,
Volker T. Heussler
Publication year - 2019
Publication title -
cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 26.304
H-Index - 776
eISSN - 1097-4172
pISSN - 0092-8674
DOI - 10.1016/j.cell.2019.10.030
Subject(s) - biology , plasmodium berghei , context (archaeology) , metabolomics , plasmodium (life cycle) , mutant , plasmodium falciparum , computational biology , gene , malaria , genetics , bioinformatics , parasite hosting , paleontology , world wide web , computer science , immunology
Plasmodium gene functions in mosquito and liver stages remain poorly characterized due to limitations in the throughput of phenotyping at these stages. To fill this gap, we followed more than 1,300 barcoded P. berghei mutants through the life cycle. We discover 461 genes required for efficient parasite transmission to mosquitoes through the liver stage and back into the bloodstream of mice. We analyze the screen in the context of genomic, transcriptomic, and metabolomic data by building a thermodynamic model of P. berghei liver-stage metabolism, which shows a major reprogramming of parasite metabolism to achieve rapid growth in the liver. We identify seven metabolic subsystems that become essential at the liver stages compared with asexual blood stages: type II fatty acid synthesis and elongation (FAE), tricarboxylic acid, amino sugar, heme, lipoate, and shikimate metabolism. Selected predictions from the model are individually validated in single mutants to provide future targets for drug development.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom