z-logo
open-access-imgOpen Access
Viral Generated Inter-Organelle Contacts Redirect Lipid Flux for Genome Replication
Author(s) -
Orly Laufman,
John Perrino,
Raul Andino
Publication year - 2019
Publication title -
cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 26.304
H-Index - 776
eISSN - 1097-4172
pISSN - 0092-8674
DOI - 10.1016/j.cell.2019.05.030
Subject(s) - biology , biogenesis , organelle , viral replication , microbiology and biotechnology , lipid droplet , organelle biogenesis , genome , virology , gene , genetics , virus
Positive-stranded RNA viruses extensively remodel host cell architecture to enable viral replication. Here, we examined the poorly understood formation of specialized membrane compartments that are critical sites for the synthesis of the viral genome. We show that the replication compartments (RCs) of enteroviruses are created through novel membrane contact sites that recruit host lipid droplets (LDs) to the RCs. Viral proteins tether the RCs to the LDs and interact with the host lipolysis machinery to enable transfer of fatty acids from LDs, thereby providing lipids essential for RC biogenesis. Inhibiting the formation of the membrane contact sites between LDs and RCs or inhibition of the lipolysis pathway disrupts RC biogenesis and enterovirus replication. Our data illuminate mechanistic and functional aspects of organelle remodeling in viral infection and establish that pharmacological targeting of contact sites linking viral and host compartments is a potential strategy for antiviral development.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom