z-logo
open-access-imgOpen Access
Trans Effects on Gene Expression Can Drive Omnigenic Inheritance
Author(s) -
Xuanyao Liu,
Yang Li,
Jonathan K. Pritchard
Publication year - 2019
Publication title -
cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 26.304
H-Index - 776
eISSN - 1097-4172
pISSN - 0092-8674
DOI - 10.1016/j.cell.2019.04.014
Subject(s) - biology , expression quantitative trait loci , genetic architecture , gene , heritability , genetics , missing heritability problem , trait , inheritance (genetic algorithm) , genome wide association study , quantitative trait locus , computational biology , evolutionary biology , genetic variation , phenotype , single nucleotide polymorphism , genotype , computer science , programming language
Early genome-wide association studies (GWASs) led to the surprising discovery that, for typical complex traits, most of the heritability is due to huge numbers of common variants with tiny effect sizes. Previously, we argued that new models are needed to understand these patterns. Here, we provide a formal model in which genetic contributions to complex traits are partitioned into direct effects from core genes and indirect effects from peripheral genes acting in trans. We propose that most heritability is driven by weak trans-eQTL SNPs, whose effects are mediated through peripheral genes to impact the expression of core genes. In particular, if the core genes for a trait tend to be co-regulated, then the effects of peripheral variation can be amplified such that nearly all of the genetic variance is driven by weak trans effects. Thus, our model proposes a framework for understanding key features of the architecture of complex traits.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom