z-logo
open-access-imgOpen Access
Redox State Controls Phase Separation of the Yeast Ataxin-2 Protein via Reversible Oxidation of Its Methionine-Rich Low-Complexity Domain
Author(s) -
Masato Kato,
Yu-San Yang,
Benjamin M. Sutter,
Yun Wang,
Steven L. McKnight,
Benjamin P. Tu
Publication year - 2019
Publication title -
cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 26.304
H-Index - 776
eISSN - 1097-4172
pISSN - 0092-8674
DOI - 10.1016/j.cell.2019.02.044
Subject(s) - methionine sulfoxide reductase , methionine , tyrosine , biology , redox , yeast , methionine sulfoxide , amino acid , biochemistry , biophysics , protein domain , hydrogen peroxide , lysine , chemistry , gene , organic chemistry
Yeast ataxin-2, also known as Pbp1, senses the activity state of mitochondria in order to regulate TORC1. A domain of Pbp1 required to adapt cells to mitochondrial activity is of low sequence complexity. The low-complexity (LC) domain of Pbp1 forms labile, cross-β polymers that facilitate phase transition of the protein into liquid-like or gel-like states. Phase transition for other LC domains is reliant upon widely distributed aromatic amino acids. In place of tyrosine or phenylalanine residues prototypically used for phase separation, Pbp1 contains 24 similarly disposed methionine residues. Here, we show that the Pbp1 methionine residues are sensitive to hydrogen peroxide (H 2 O 2 )-mediated oxidation in vitro and in living cells. Methionine oxidation melts Pbp1 liquid-like droplets in a manner reversed by methionine sulfoxide reductase enzymes. These observations explain how reversible formation of labile polymers by the Pbp1 LC domain enables the protein to function as a sensor of cellular redox state.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom