z-logo
open-access-imgOpen Access
Engineering a Model Cell for Rational Tuning of GPCR Signaling
Author(s) -
W. M. Shaw,
Hitoshi Yamauchi,
Jack Mead,
Glen-Oliver F. Gowers,
David Bell,
David Öling,
Niklas Larsson,
Mark Wigglesworth,
Graham Ladds,
Tom Ellis
Publication year - 2019
Publication title -
cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 26.304
H-Index - 776
eISSN - 1097-4172
pISSN - 0092-8674
DOI - 10.1016/j.cell.2019.02.023
Subject(s) - g protein coupled receptor , biology , computational biology , modular design , signal transduction , synthetic biology , rational design , reprogramming , microbiology and biotechnology , cell , computer science , genetics , operating system
G protein-coupled receptor (GPCR) signaling is the primary method eukaryotes use to respond to specific cues in their environment. However, the relationship between stimulus and response for each GPCR is difficult to predict due to diversity in natural signal transduction architecture and expression. Using genome engineering in yeast, we constructed an insulated, modular GPCR signal transduction system to study how the response to stimuli can be predictably tuned using synthetic tools. We delineated the contributions of a minimal set of key components via computational and experimental refactoring, identifying simple design principles for rationally tuning the dose response. Using five different GPCRs, we demonstrate how this enables cells and consortia to be engineered to respond to desired concentrations of peptides, metabolites, and hormones relevant to human health. This work enables rational tuning of cell sensing while providing a framework to guide reprogramming of GPCR-based signaling in other systems.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom