z-logo
open-access-imgOpen Access
Beta-Arrestin1 Prevents Preeclampsia by Downregulation of Mechanosensitive AT1-B2 Receptor Heteromers
Author(s) -
Ursula Quitterer,
Xuebin Fu,
Armin Pohl,
Karam M. Bayoumy,
Andreas Langer,
Said AbdAlla
Publication year - 2018
Publication title -
cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 26.304
H-Index - 776
eISSN - 1097-4172
pISSN - 0092-8674
DOI - 10.1016/j.cell.2018.10.050
Subject(s) - preeclampsia , downregulation and upregulation , angiotensin ii receptor type 1 , biology , receptor , endocrinology , medicine , angiotensin ii , microbiology and biotechnology , pregnancy , blood pressure , biochemistry , genetics , gene
Preeclampsia is the most frequent pregnancy-related complication worldwide with no cure. While a number of molecular features have emerged, the underlying causal mechanisms behind the disorder remain obscure. Here, we find that increased complex formation between angiotensin II AT1 and bradykinin B2, two G protein-coupled receptors with opposing effects on blood vessel constriction, triggers symptoms of preeclampsia in pregnant mice. Aberrant heteromerization of AT1-B2 led to exaggerated calcium signaling and high vascular smooth muscle mechanosensitivity, which could explain the onset of preeclampsia symptoms at late-stage pregnancy as mechanical forces increase with fetal mass. AT1-B2 receptor aggregation was inhibited by beta-arrestin-mediated downregulation. Importantly, symptoms of preeclampsia were prevented by transgenic ARRB1 expression or a small-molecule drug. Because AT1-B2 heteromerization was found to occur in human placental biopsies from pregnancies complicated by preeclampsia, specifically targeting AT1-B2 heteromerization and its downstream consequences represents a promising therapeutic approach.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom