z-logo
open-access-imgOpen Access
Single-Cell Transcriptomics and Fate Mapping of Ependymal Cells Reveals an Absence of Neural Stem Cell Function
Author(s) -
Prajay Shah,
Jo Anne Stratton,
Morgan G. Stykel,
Sepideh Abbasi,
Sandeep Sharma,
Kyle A. Mayr,
Kathrin Koblinger,
Patrick J. Whelan,
Jeff Biernaskie
Publication year - 2018
Publication title -
cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 26.304
H-Index - 776
eISSN - 1097-4172
pISSN - 0092-8674
DOI - 10.1016/j.cell.2018.03.063
Subject(s) - ependymal cell , neural stem cell , biology , subventricular zone , stem cell , progenitor cell , microbiology and biotechnology , neuroscience , central nervous system
Ependymal cells are multi-ciliated cells that form the brain's ventricular epithelium and a niche for neural stem cells (NSCs) in the ventricular-subventricular zone (V-SVZ). In addition, ependymal cells are suggested to be latent NSCs with a capacity to acquire neurogenic function. This remains highly controversial due to a lack of prospective in vivo labeling techniques that can effectively distinguish ependymal cells from neighboring V-SVZ NSCs. We describe a transgenic system that allows for targeted labeling of ependymal cells within the V-SVZ. Single-cell RNA-seq revealed that ependymal cells are enriched for cilia-related genes and share several stem-cell-associated genes with neural stem or progenitors. Under in vivo and in vitro neural-stem- or progenitor-stimulating environments, ependymal cells failed to demonstrate any suggestion of latent neural-stem-cell function. These findings suggest remarkable stability of ependymal cell function and provide fundamental insights into the molecular signature of the V-SVZ niche.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom