ATP Binding Enables Substrate Release from Multidrug Resistance Protein 1
Author(s) -
Z.L. Johnson,
Jue Chen
Publication year - 2017
Publication title -
cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 26.304
H-Index - 776
eISSN - 1097-4172
pISSN - 0092-8674
DOI - 10.1016/j.cell.2017.12.005
Subject(s) - biology , intracellular , substrate (aquarium) , atp hydrolysis , binding site , multiple drug resistance , plasma protein binding , biophysics , extracellular , microbiology and biotechnology , atp binding cassette transporter , transporter , transport protein , biochemistry , conformational change , adenosine triphosphate , membrane , enzyme , atpase , ecology , gene , antibiotics
The multidrug resistance protein MRP1 is an ATP-driven pump that confers resistance to chemotherapy. Previously, we have shown that intracellular substrates are recruited to a bipartite binding site when the transporter rests in an inward-facing conformation. A key question remains: how are high-affinity substrates transferred across the membrane and released outside the cell? Using electron cryomicroscopy, we show here that ATP binding opens the transport pathway to the extracellular space and reconfigures the substrate-binding site such that it relinquishes its affinity for substrate. Thus, substrate is released prior to ATP hydrolysis. With this result, we now have a complete description of the conformational cycle that enables substrate transfer in a eukaryotic ABC exporter.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom