z-logo
open-access-imgOpen Access
Developmental Acquisition of Regulomes Underlies Innate Lymphoid Cell Functionality
Author(s) -
HanYu Shih,
Giuseppe Sciumè,
Yohei Mikami,
Liying Guo,
HongWei Sun,
Stephen R. Brooks,
Joseph F. Urban,
Fred P. Davis,
Yuka Kanno,
John J. O’Shea
Publication year - 2016
Publication title -
cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 26.304
H-Index - 776
eISSN - 1097-4172
pISSN - 0092-8674
DOI - 10.1016/j.cell.2016.04.029
Subject(s) - biology , innate lymphoid cell , chromatin , effector , transcription factor , microbiology and biotechnology , innate immune system , acquired immune system , immune system , immunology , gene , genetics
Innate lymphoid cells (ILCs) play key roles in host defense, barrier integrity, and homeostasis and mirror adaptive CD4(+) T helper (Th) cell subtypes in both usage of effector molecules and transcription factors. To better understand the relationship between ILC subsets and their Th cell counterparts, we measured genome-wide chromatin accessibility. We find that chromatin in proximity to effector genes is selectively accessible in ILCs prior to high-level transcription upon activation. Accessibility of these regions is acquired in a stepwise manner during development and changes little after in vitro or in vivo activation. Conversely, dramatic chromatin remodeling occurs in naive CD4(+) T cells during Th cell differentiation using a type-2-infection model. This alteration results in a substantial convergence of Th2 cells toward ILC2 regulomes. Our data indicate extensive sharing of regulatory circuitry across the innate and adaptive compartments of the immune system, in spite of their divergent developing pathways.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom