z-logo
open-access-imgOpen Access
Precision Tumor Recognition by T Cells With Combinatorial Antigen-Sensing Circuits
Author(s) -
Kole T. Roybal,
Levi J. Rupp,
Leonardo Morsut,
Whitney J. Walker,
Krista A. McNally,
Jason S. Park,
Wendell A. Lim
Publication year - 2016
Publication title -
cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 26.304
H-Index - 776
eISSN - 1097-4172
pISSN - 0092-8674
DOI - 10.1016/j.cell.2016.01.011
Subject(s) - antigen , chimeric antigen receptor , biology , bystander effect , antigen presenting cell , cytotoxic t cell , microbiology and biotechnology , immunology , receptor , t cell , cancer research , immune system , in vitro , genetics
T cells can be re-directed to kill cancer cells using chimeric antigen receptors (CARs) or T cell receptors (TCRs). This approach, however, is constrained by the rarity of tumor-specific single antigens. Targeting antigens also found on bystander tissues can cause life-threatening adverse effects. A powerful way to enhance ON-target activity of therapeutic T cells is to engineer them to require combinatorial antigens. Here, we engineer a combinatorially activated T cell circuit in which a synthetic Notch receptor for one antigen induces the expression of a CAR for a second antigen. These dual-receptor AND-gate T cells are only armed and activated in the presence of dual antigen tumor cells. These T cells show precise therapeutic discrimination in vivo-sparing single antigen "bystander" tumors while efficiently clearing combinatorial antigen "disease" tumors. This type of precision dual-receptor circuit opens the door to immune recognition of a wider range of tumors. VIDEO ABSTRACT.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom