Cancer Immunosurveillance by Tissue-Resident Innate Lymphoid Cells and Innate-like T Cells
Author(s) -
Saïda Dadi,
Sagar Chhangawala,
Benjamin M. Whitlock,
Ruth A. Franklin,
Chong Luo,
Soyoung Oh,
Ahmed Toure,
Yuri Pritykin,
Morgan Huse,
Christina Leslie,
Ming O. Li
Publication year - 2016
Publication title -
cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 26.304
H-Index - 776
eISSN - 1097-4172
pISSN - 0092-8674
DOI - 10.1016/j.cell.2016.01.002
Subject(s) - immunosurveillance , biology , innate lymphoid cell , innate immune system , cytotoxic t cell , immunology , natural killer t cell , microbiology and biotechnology , immune system , cd8 , cancer research , genetics , in vitro
Malignancy can be suppressed by the immune system in a process termed immunosurveillance. However, to what extent immunosurveillance occurs in spontaneous cancers and the composition of participating cell types remains obscure. Here, we show that cell transformation triggers a tissue-resident lymphocyte response in oncogene-induced murine cancer models. Non-circulating cytotoxic lymphocytes, derived from innate, T cell receptor (TCR)αβ, and TCRγδ lineages, expand in early tumors. Characterized by high expression of NK1.1, CD49a, and CD103, these cells share a gene-expression signature distinct from those of conventional NK cells, T cells, and invariant NKT cells. Generation of these lymphocytes is dependent on the cytokine IL-15, but not the transcription factor Nfil3 that is required for the differentiation of tumor-infiltrating NK cells, and IL-15 deficiency, but not Nfil3 deficiency, results in accelerated tumor growth. These findings reveal a tumor-elicited immunosurveillance mechanism that engages unconventional type-1-like innate lymphoid cells and type 1 innate-like T cells.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom