z-logo
open-access-imgOpen Access
Evolving New Skeletal Traits by cis -Regulatory Changes in Bone Morphogenetic Proteins
Author(s) -
Vahan B. Indjeian,
Garrett A. Roberts Kingman,
Felicity C. Jones,
Catherine Guenther,
Jane Grimwood,
Jeremy Schmutz,
R Myers,
David M. Kingsley
Publication year - 2016
Publication title -
cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 26.304
H-Index - 776
eISSN - 1097-4172
pISSN - 0092-8674
DOI - 10.1016/j.cell.2015.12.007
Subject(s) - biology , bone morphogenetic protein , evolutionary biology , genetics , microbiology and biotechnology , gene
Changes in bone size and shape are defining features of many vertebrates. Here we use genetic crosses and comparative genomics to identify specific regulatory DNA alterations controlling skeletal evolution. Armor bone-size differences in sticklebacks map to a major effect locus overlapping BMP family member GDF6. Freshwater fish express more GDF6 due in part to a transposon insertion, and transgenic overexpression of GDF6 phenocopies evolutionary changes in armor-plate size. The human GDF6 locus also has undergone distinctive regulatory evolution, including complete loss of an enhancer that is otherwise highly conserved between chimps and other mammals. Functional tests show that the ancestral enhancer drives expression in hindlimbs but not forelimbs, in locations that have been specifically modified during the human transition to bipedalism. Both gain and loss of regulatory elements can localize BMP changes to specific anatomical locations, providing a flexible regulatory basis for evolving species-specific changes in skeletal form.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom