z-logo
open-access-imgOpen Access
MAJIN Links Telomeric DNA to the Nuclear Membrane by Exchanging Telomere Cap
Author(s) -
Hiroki Shibuya,
Abrahan HernándezHernández,
Akihiro Morimoto,
Lumi Negishi,
Christer Höög,
Yoshinori Watanabe
Publication year - 2015
Publication title -
cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 26.304
H-Index - 776
eISSN - 1097-4172
pISSN - 0092-8674
DOI - 10.1016/j.cell.2015.10.030
Subject(s) - biology , telomere , dna , microbiology and biotechnology , genetics , nuclear membrane , telomere binding protein , computational biology , dna binding protein , membrane , gene , transcription factor
In meiosis, telomeres attach to the inner nuclear membrane (INM) and drive the chromosome movement required for homolog pairing and recombination. Here, we address the question of how telomeres are structurally adapted for the meiotic task. We identify a multi-subunit meiotic telomere-complex, TERB1/2-MAJIN, which takes over telomeric DNA from the shelterin complex in mouse germ cells. TERB1/2-MAJIN initially assembles on the INM sequestered by its putative transmembrane subunit MAJIN. In early meiosis, telomere attachment is achieved by the formation of a chimeric complex of TERB1/2-MAJIN and shelterin. The chimeric complex matures during prophase into DNA-bound TERB1/2-MAJIN by releasing shelterin, forming a direct link between telomeric DNA and the INM. These hierarchical processes, termed "telomere cap exchange," are regulated by CDK-dependent phosphorylation and the DNA-binding activity of MAJIN. Further, we uncover a positive feedback between telomere attachment and chromosome movement, revealing a comprehensive regulatory network underlying meiosis-specific telomere function in mammals.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom