z-logo
open-access-imgOpen Access
An Adaptor Hierarchy Regulates Proteolysis during a Bacterial Cell Cycle
Author(s) -
Kamal Kishore Joshi,
Matthieu Bergé,
Sunish Kumar Radhakrishnan,
Patrick H. Viollier,
Peter Chien
Publication year - 2015
Publication title -
cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 26.304
H-Index - 776
eISSN - 1097-4172
pISSN - 0092-8674
DOI - 10.1016/j.cell.2015.09.030
Subject(s) - caulobacter crescentus , biology , signal transducing adaptor protein , proteolysis , microbiology and biotechnology , proteases , cell cycle , ubiquitin , cell , biochemistry , signal transduction , enzyme , gene
Regulated protein degradation is essential. The timed destruction of crucial proteins by the ClpXP protease drives cell-cycle progression in the bacterium Caulobacter crescentus. Although ClpXP is active alone, additional factors are inexplicably required for cell-cycle-dependent proteolysis. Here, we show that these factors constitute an adaptor hierarchy wherein different substrates are destroyed based on the degree of adaptor assembly. The hierarchy builds upon priming of ClpXP by the adaptor CpdR, which promotes degradation of one class of substrates and also recruits the adaptor RcdA to degrade a second class of substrates. Adding the PopA adaptor promotes destruction of a third class of substrates and inhibits degradation of the second class. We dissect RcdA to generate bespoke adaptors, identifying critical substrate elements needed for RcdA recognition and uncovering additional cell-cycle-dependent ClpXP substrates. Our work reveals how hierarchical adaptors and primed proteases orchestrate regulated proteolysis during bacterial cell-cycle progression.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom