z-logo
open-access-imgOpen Access
RIPK1 Regulates RIPK3-MLKL-Driven Systemic Inflammation and Emergency Hematopoiesis
Author(s) -
James A. Rickard,
Joanne A. O’Donnell,
Joseph M. Evans,
Najoua Lalaoui,
Ashleigh R. Poh,
TeWhiti Rogers,
James E. Vince,
Kate E. Lawlor,
Robert L. Ninnis,
Holly Anderton,
Cathrine Hall,
Sukhdeep K. Spall,
Toby J. Phesse,
Helen E. Abud,
Louise H. Cengia,
Jason Corbin,
Sandra Mifsud,
Ladina Di Rago,
Donald Metcalf,
Matthias Ernst,
Grant Dewson,
Andrew W. Roberts,
Warren S. Alexander,
James M. Murphy,
Paul G. Ekert,
Seth L. Masters,
David L. Vaux,
Ben A. Croker,
Motti Gerlic,
John Silke
Publication year - 2014
Publication title -
cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 26.304
H-Index - 776
eISSN - 1097-4172
pISSN - 0092-8674
DOI - 10.1016/j.cell.2014.04.019
Subject(s) - biology , inflammation , haematopoiesis , microbiology and biotechnology , ripk1 , systemic inflammation , cancer research , programmed cell death , immunology , necroptosis , apoptosis , genetics , stem cell
Upon ligand binding, RIPK1 is recruited to tumor necrosis factor receptor superfamily (TNFRSF) and Toll-like receptor (TLR) complexes promoting prosurvival and inflammatory signaling. RIPK1 also directly regulates caspase-8-mediated apoptosis or, if caspase-8 activity is blocked, RIPK3-MLKL-dependent necroptosis. We show that C57BL/6 Ripk1(-/-) mice die at birth of systemic inflammation that was not transferable by the hematopoietic compartment. However, Ripk1(-/-) progenitors failed to engraft lethally irradiated hosts properly. Blocking TNF reversed this defect in emergency hematopoiesis but, surprisingly, Tnfr1 deficiency did not prevent inflammation in Ripk1(-/-) neonates. Deletion of Ripk3 or Mlkl, but not Casp8, prevented extracellular release of the necroptotic DAMP, IL-33, and reduced Myd88-dependent inflammation. Reduced inflammation in the Ripk1(-/-)Ripk3(-/-), Ripk1(-/-)Mlkl(-/-), and Ripk1(-/-)Myd88(-/-) mice prevented neonatal lethality, but only Ripk1(-/-)Ripk3(-/-)Casp8(-/-) mice survived past weaning. These results reveal a key function for RIPK1 in inhibiting necroptosis and, thereby, a role in limiting, not only promoting, inflammation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom