z-logo
open-access-imgOpen Access
Distinct Lineage-Dependent Structural and Functional Organization of the Hippocampus
Author(s) -
Huatai Xu,
Zhi Han,
Peng Gao,
Shuijin He,
Zhizhong Li,
Shi Wei,
Oren Kodish,
Wei Shao,
Keith N. Brown,
Kun Huang,
SongHai Shi
Publication year - 2014
Publication title -
cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 26.304
H-Index - 776
eISSN - 1097-4172
pISSN - 0092-8674
DOI - 10.1016/j.cell.2014.03.067
Subject(s) - neocortex , biology , excitatory postsynaptic potential , neuroscience , hippocampus , inhibitory postsynaptic potential , hippocampal formation , soma
The hippocampus, as part of the cerebral cortex, is essential for memory formation and spatial navigation. Although it has been extensively studied, especially as a model system for neurophysiology, the cellular processes involved in constructing and organizing the hippocampus remain largely unclear. Here, we show that clonally related excitatory neurons in the developing hippocampus are progressively organized into discrete horizontal, but not vertical, clusters in the stratum pyramidale, as revealed by both cell-type-specific retroviral labeling and mosaic analysis with double markers (MADM). Moreover, distinct from those in the neocortex, sister excitatory neurons in the cornu ammonis 1 region of the hippocampus rarely develop electrical or chemical synapses with each other. Instead, they preferentially receive common synaptic input from nearby fast-spiking (FS), but not non-FS, interneurons and exhibit synchronous synaptic activity. These results suggest that shared inhibitory input may specify horizontally clustered sister excitatory neurons as functional units in the hippocampus.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom