z-logo
open-access-imgOpen Access
Precise Developmental Gene Expression Arises from Globally Stochastic Transcriptional Activity
Author(s) -
Shawn C. Little,
Mikhail Tikhonov,
Thomas Gregor
Publication year - 2013
Publication title -
cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 26.304
H-Index - 776
eISSN - 1097-4172
pISSN - 0092-8674
DOI - 10.1016/j.cell.2013.07.025
Subject(s) - biology , gene expression , gene , genetics , expression (computer science) , regulation of gene expression , computational biology , computer science , programming language
Early embryonic patterning events are strikingly precise, a fact that appears incompatible with the stochastic gene expression observed across phyla. Using single-molecule mRNA quantification in Drosophila embryos, we determine the magnitude of fluctuations in the expression of four critical patterning genes. The accumulation of mRNAs is identical across genes and fluctuates by only ∼8% between neighboring nuclei, generating precise protein distributions. In contrast, transcribing loci exhibit an intrinsic noise of ∼45% independent of specific promoter-enhancer architecture or fluctuating inputs. Precise transcript distribution in the syncytium is recovered via straightforward spatiotemporal averaging, i.e., accumulation and diffusion of transcripts during nuclear cycles, without regulatory feedback. Common expression characteristics shared between genes suggest that fluctuations in mRNA production are context independent and are a fundamental property of transcription. The findings shed light on how the apparent paradox between stochastic transcription and developmental precision is resolved.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom