z-logo
open-access-imgOpen Access
A Systems Analysis Identifies a Feedforward Inflammatory Circuit Leading to Lethal Influenza Infection
Author(s) -
Marlène Brandes,
Frederick Klauschen,
Stefan Kuchen,
Ronald N. Germain
Publication year - 2013
Publication title -
cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 26.304
H-Index - 776
eISSN - 1097-4172
pISSN - 0092-8674
DOI - 10.1016/j.cell.2013.06.013
Subject(s) - biology , chemokine , proinflammatory cytokine , immunology , innate immune system , inflammation , flow cytometry , immunity , virology , immune system
For acutely lethal influenza infections, the relative pathogenic contributions of direct viral damage to lung epithelium versus dysregulated immunity remain unresolved. Here, we take a top-down systems approach to this question. Multigene transcriptional signatures from infected lungs suggested that elevated activation of inflammatory signaling networks distinguished lethal from sublethal infections. Flow cytometry and gene expression analysis involving isolated cell subpopulations from infected lungs showed that neutrophil influx largely accounted for the predictive transcriptional signature. Automated imaging analysis, together with these gene expression and flow data, identified a chemokine-driven feedforward circuit involving proinflammatory neutrophils potently driven by poorly contained lethal viruses. Consistent with these data, attenuation, but not ablation, of the neutrophil-driven response increased survival without changing viral spread. These findings establish the primacy of damaging innate inflammation in at least some forms of influenza-induced lethality and provide a roadmap for the systematic dissection of infection-associated pathology.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom