Punctuated Evolution of Prostate Cancer Genomes
Author(s) -
Sylvan C. Baca,
Davide Prandi,
Michael S. Lawrence,
Juan Miguel Mosquera,
Alessandro Romanel,
Yotam Drier,
Kyung Park,
Naoki Kitabayashi,
Theresa Y. MacDonald,
Mahmoud Ghandi,
Eliezer M. Van Allen,
Gregory V. Kryukov,
Andrea Sboner,
JeanPhilippe Theurillat,
T. David Soong,
Elizabeth Nickerson,
Daniel Auclair,
Ashutosh Tewari,
Himisha Beltran,
Robert C. Onofrio,
Gunther Boysen,
Candace Guiducci,
Christopher E. Barbieri,
Kristian Cibulskis,
Andrey Sivachenko,
Scott L. Carter,
Gordon Saksena,
Douglas Voet,
Alex H. Ramos,
Wendy Winckler,
Michelle Cipicchio,
Kristin Ardlie,
Philip W. Kantoff,
Michael F. Berger,
Stacey Gabriel,
Todd R. Golub,
Matthew Meyerson,
Eric S. Lander,
Olivier Elemento,
Gad Getz,
Francesca Demichelis,
Mark A. Rubin,
Levi A. Garraway
Publication year - 2013
Publication title -
cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 26.304
H-Index - 776
eISSN - 1097-4172
pISSN - 0092-8674
DOI - 10.1016/j.cell.2013.03.021
Subject(s) - biology , genome , prostate cancer , cancer , punctuated equilibrium , evolutionary biology , computational biology , genetics , gene
The analysis of exonic DNA from prostate cancers has identified recurrently mutated genes, but the spectrum of genome-wide alterations has not been profiled extensively in this disease. We sequenced the genomes of 57 prostate tumors and matched normal tissues to characterize somatic alterations and to study how they accumulate during oncogenesis and progression. By modeling the genesis of genomic rearrangements, we identified abundant DNA translocations and deletions that arise in a highly interdependent manner. This phenomenon, which we term "chromoplexy," frequently accounts for the dysregulation of prostate cancer genes and appears to disrupt multiple cancer genes coordinately. Our modeling suggests that chromoplexy may induce considerable genomic derangement over relatively few events in prostate cancer and other neoplasms, supporting a model of punctuated cancer evolution. By characterizing the clonal hierarchy of genomic lesions in prostate tumors, we charted a path of oncogenic events along which chromoplexy may drive prostate carcinogenesis.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom