Genomes on the Edge: Programmed Genome Instability in Ciliates
Author(s) -
John R. Bracht,
Wenwen Fang,
Aaron D. Goldman,
Egor Dolzhenko,
Elizabeth M. Stein,
Laura F. Landweber
Publication year - 2013
Publication title -
cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 26.304
H-Index - 776
eISSN - 1097-4172
pISSN - 0092-8674
DOI - 10.1016/j.cell.2013.01.005
Subject(s) - biology , genome , noncoding dna , evolutionary biology , genetics , epigenetics , rna , transposable element , tetrahymena , computational biology , gene
Ciliates are an ancient and diverse group of microbial eukaryotes that have emerged as powerful models for RNA-mediated epigenetic inheritance. They possess extensive sets of both tiny and long noncoding RNAs that, together with a suite of proteins that includes transposases, orchestrate a broad cascade of genome rearrangements during somatic nuclear development. This Review emphasizes three important themes: the remarkable role of RNA in shaping genome structure, recent discoveries that unify many deeply diverged ciliate genetic systems, and a surprising evolutionary "sign change" in the role of small RNAs between major species groups.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom