Structural Basis for Recruitment and Activation of the AP-1 Clathrin Adaptor Complex by Arf1
Author(s) -
Xuefeng Ren,
Ginny G. Farı́as,
Bertram Canagarajah,
Juan S. Bonifacino,
James H. Hurley
Publication year - 2013
Publication title -
cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 26.304
H-Index - 776
eISSN - 1097-4172
pISSN - 0092-8674
DOI - 10.1016/j.cell.2012.12.042
Subject(s) - biology , clathrin , endosome , gtp' , protein subunit , signal transducing adaptor protein , microbiology and biotechnology , golgi apparatus , n terminus , endocytosis , peptide sequence , signal transduction , receptor , biochemistry , endoplasmic reticulum , enzyme , gene , intracellular
AP-1 is a clathrin adaptor complex that sorts cargo between the trans-Golgi network and endosomes. AP-1 recruitment to these compartments requires Arf1-GTP. The crystal structure of the tetrameric core of AP-1 in complex with Arf1-GTP, together with biochemical analyses, shows that Arf1 activates cargo binding by unlocking AP-1. Unlocking is driven by two molecules of Arf1 that bridge two copies of AP-1 at two interaction sites. The GTP-dependent switch I and II regions of Arf1 bind to the N terminus of the β1 subunit of one AP-1 complex, while the back side of Arf1 binds to the central part of the γ subunit trunk of a second AP-1 complex. A third Arf1 interaction site near the N terminus of the γ subunit is important for recruitment, but not activation. These observations lead to a model for the recruitment and activation of AP-1 by Arf1.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom