z-logo
open-access-imgOpen Access
Inactivation of BAD by IKK Inhibits TNFα-Induced Apoptosis Independently of NF-κB Activation
Author(s) -
Jie Yan,
Jialing Xiang,
Yutin Lin,
Jingui Ma,
Jiyan Zhang,
Hao Zhang,
Jisheng Sun,
Nika N. Danial,
Jing Liu,
Anning Lin
Publication year - 2013
Publication title -
cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 26.304
H-Index - 776
eISSN - 1097-4172
pISSN - 0092-8674
DOI - 10.1016/j.cell.2012.12.021
Subject(s) - biology , nf κb , apoptosis , nfkb1 , iκb kinase , tumor necrosis factor alpha , microbiology and biotechnology , cancer research , genetics , immunology , transcription factor , gene
The IκB kinase complex (IKK) is a key regulator of immune responses, inflammation, cell survival, and tumorigenesis. The prosurvival function of IKK centers on activation of the transcription factor NF-κB, whose target gene products inhibit caspases and prevent prolonged JNK activation. Here, we report that inactivation of the BH3-only protein BAD by IKK independently of NF-κB activation suppresses TNFα-induced apoptosis. TNFα-treated Ikkβ(-/-) mouse embryonic fibroblasts (MEFs) undergo apoptosis significantly faster than MEFs deficient in both RelA and cRel due to lack of inhibition of BAD by IKK. IKK phosphorylates BAD at serine-26 (Ser26) and primes it for inactivation. Elimination of Ser26 phosphorylation promotes BAD proapoptotic activity, thereby accelerating TNFα-induced apoptosis in cultured cells and increasing mortality in animals. Our results reveal that IKK inhibits TNFα-induced apoptosis through two distinct but cooperative mechanisms: activation of the survival factor NF-κB and inactivation of the proapoptotic BH3-only BAD protein.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom