Developmentally Regulated Subnuclear Genome Reorganization Restricts Neural Progenitor Competence in Drosophila
Author(s) -
Minoree Kohwi,
Joshua R. Lupton,
Sen-Lin Lai,
Michael R. Miller,
Chris Q. Doe
Publication year - 2013
Publication title -
cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 26.304
H-Index - 776
eISSN - 1097-4172
pISSN - 0092-8674
DOI - 10.1016/j.cell.2012.11.049
Subject(s) - biology , progenitor , drosophila (subgenus) , genome , progenitor cell , competence (human resources) , drosophila melanogaster , microbiology and biotechnology , neuroscience , genetics , stem cell , gene , psychology , social psychology
Stem and/or progenitor cells often generate distinct cell types in a stereotyped birth order and over time lose competence to specify earlier-born fates by unknown mechanisms. In Drosophila, the Hunchback transcription factor acts in neural progenitors (neuroblasts) to specify early-born neurons, in part by indirectly inducing the neuronal transcription of its target genes, including the hunchback gene. We used in vivo immuno-DNA FISH and found that the hunchback gene moves to the neuroblast nuclear periphery, a repressive subnuclear compartment, precisely when competence to specify early-born fate is lost and several hours and cell divisions after termination of its transcription. hunchback movement to the lamina correlated with downregulation of the neuroblast nuclear protein, Distal antenna (Dan). Either prolonging Dan expression or disrupting lamina interfered with hunchback repositioning and extended neuroblast competence. We propose that neuroblasts undergo a developmentally regulated subnuclear genome reorganization to permanently silence Hunchback target genes that results in loss of progenitor competence.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom