Nucleosomal Elements that Control the Topography of the Barrier to Transcription
Author(s) -
Lacramioara Bintu,
Toyotaka Ishibashi,
Manchuta Dangkulwanich,
Yueh-Yi Wu,
Lucyna Lubkowska,
Mikhail Kashlev,
Carlos Bustamante
Publication year - 2012
Publication title -
cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 26.304
H-Index - 776
eISSN - 1097-4172
pISSN - 0092-8674
DOI - 10.1016/j.cell.2012.10.009
Subject(s) - nucleosome , biology , rna polymerase ii , chromatin , histone , transcription (linguistics) , microbiology and biotechnology , genetics , dna , gene expression , gene , promoter , linguistics , philosophy
The nucleosome represents a mechanical barrier to transcription that operates as a general regulator of gene expression. We investigate how each nucleosomal component-the histone tails, the specific histone-DNA contacts, and the DNA sequence-contributes to the strength of the barrier. Removal of the tails favors progression of RNA polymerase II into the entry region of the nucleosome by locally increasing the wrapping-unwrapping rates of the DNA around histones. In contrast, point mutations that affect histone-DNA contacts at the dyad abolish the barrier to transcription in the central region by decreasing the local wrapping rate. Moreover, we show that the nucleosome amplifies sequence-dependent transcriptional pausing, an effect mediated through the structure of the nascent RNA. Each of these nucleosomal elements controls transcription elongation by affecting distinctly the density and duration of polymerase pauses, thus providing multiple and alternative mechanisms for control of gene expression by chromatin remodeling and transcription factors.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom