z-logo
open-access-imgOpen Access
Genome-wide Single-Cell Analysis of Recombination Activity and De Novo Mutation Rates in Human Sperm
Author(s) -
Jianbin Wang,
H. Christina Fan,
Barry Behr,
Stephen R. Quake
Publication year - 2012
Publication title -
cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 26.304
H-Index - 776
eISSN - 1097-4172
pISSN - 0092-8674
DOI - 10.1016/j.cell.2012.06.030
Subject(s) - biology , sperm , recombination , genetics , mutation , genome , mutation rate , homologous recombination , gene
Meiotic recombination and de novo mutation are the two main contributions toward gamete genome diversity, and many questions remain about how an individual human's genome is edited by these two processes. Here, we describe a high-throughput method for single-cell whole-genome analysis that was used to measure the genomic diversity in one individual's gamete genomes. A microfluidic system was used for highly parallel sample processing and to minimize nonspecific amplification. High-density genotyping results from 91 single cells were used to create a personal recombination map, which was consistent with population-wide data at low resolution but revealed significant differences from pedigree data at higher resolution. We used the data to test for meiotic drive and found evidence for gene conversion. High-throughput sequencing on 31 single cells was used to measure the frequency of large-scale genome instability, and deeper sequencing of eight single cells revealed de novo mutation rates with distinct characteristics.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom