RETRACTED: A Self-Produced Trigger for Biofilm Disassembly that Targets Exopolysaccharide
Author(s) -
Ilana Kolodkin–Gal,
Shugeng Cao,
Liraz Chai,
Thomas Böttcher,
Roberto Kolter,
Jon Clardy,
Richard Losick
Publication year - 2012
Publication title -
cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 26.304
H-Index - 776
eISSN - 1097-4172
pISSN - 0092-8674
DOI - 10.1016/j.cell.2012.02.055
Subject(s) - biofilm , bacillus subtilis , biology , microbiology and biotechnology , bacteria , escherichia coli , extracellular polymeric substance , amino acid , extracellular matrix , biochemistry , staphylococcus aureus , gene , genetics
Biofilms are structured communities of bacteria that are held together by an extracellular matrix consisting of protein and exopolysaccharide. Biofilms often have a limited lifespan, disassembling as nutrients become exhausted and waste products accumulate. D-amino acids were previously identified as a self-produced factor that mediates biofilm disassembly by causing the release of the protein component of the matrix in Bacillus subtilis. Here we report that B. subtilis produces an additional biofilm-disassembly factor, norspermidine. Dynamic light scattering and scanning electron microscopy experiments indicated that norspermidine interacts directly and specifically with exopolysaccharide. D-amino acids and norspermidine acted together to break down existing biofilms and mutants blocked in the production of both factors formed long-lived biofilms. Norspermidine, but not closely related polyamines, prevented biofilm formation by B. subtilis, Escherichia coli, and Staphylococcus aureus.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom