Biochemically Distinct Vesicles from the Endoplasmic Reticulum Fuse to Form Peroxisomes
Author(s) -
Adabella van der Zand,
Jürgen Gent,
Ineke Braakman,
Henk F. Tabak
Publication year - 2012
Publication title -
cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 26.304
H-Index - 776
eISSN - 1097-4172
pISSN - 0092-8674
DOI - 10.1016/j.cell.2012.01.054
Subject(s) - endoplasmic reticulum , biology , peroxisome , vesicle , microbiology and biotechnology , biochemistry , membrane , gene
As a rule, organelles in eukaryotic cells can derive only from pre-existing organelles. Peroxisomes are unique because they acquire their lipids and membrane proteins from the endoplasmic reticulum (ER), whereas they import their matrix proteins directly from the cytosol. We have discovered that peroxisomes are formed via heterotypic fusion of at least two biochemically distinct preperoxisomal vesicle pools that arise from the ER. These vesicles each carry half a peroxisomal translocon complex. Their fusion initiates assembly of the full peroxisomal translocon and subsequent uptake of enzymes from the cytosol. Our findings demonstrate a remarkable mechanism to maintain biochemical identity of organelles by transporting crucial components via different routes to their final destination.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom