z-logo
open-access-imgOpen Access
A Role for tRNA Modifications in Genome Structure and Codon Usage
Author(s) -
Eva Maria Novoa,
Mariana Pavon-Eternod,
Tao Pan,
Lluı́s Ribas de Pouplana
Publication year - 2012
Publication title -
cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 26.304
H-Index - 776
eISSN - 1097-4172
pISSN - 0092-8674
DOI - 10.1016/j.cell.2012.01.050
Subject(s) - biology , transfer rna , codon usage bias , genome , gene , genetics , rna , computational biology
Transfer RNA (tRNA) gene content is a differentiating feature of genomes that contributes to the efficiency of the translational apparatus, but the principles shaping tRNA gene copy number and codon composition are poorly understood. Here, we report that the emergence of two specific tRNA modifications shaped the structure and composition of all extant genomes. Through the analysis of more than 500 genomes, we identify two kingdom-specific tRNA modifications as major contributors that separated archaeal, bacterial, and eukaryal genomes in terms of their tRNA gene composition. We show that, contrary to prior observations, genomic codon usage and tRNA gene frequencies correlate in all kingdoms if these two modifications are taken into account and that presence or absence of these modifications explains patterns of gene expression observed in previous studies. Finally, we experimentally demonstrate that human gene expression levels correlate well with genomic codon composition if these identified modifications are considered.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom