z-logo
open-access-imgOpen Access
An ADIOL-ERβ-CtBP Transrepression Pathway Negatively Regulates Microglia-Mediated Inflammation
Author(s) -
Kaoru Saijo,
Jana G. Collier,
Andrew C. Li,
John A. Katzenellenbogen,
Christopher K. Glass
Publication year - 2011
Publication title -
cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 26.304
H-Index - 776
eISSN - 1097-4172
pISSN - 0092-8674
DOI - 10.1016/j.cell.2011.03.050
Subject(s) - microglia , biology , corepressor , inflammation , transrepression , microbiology and biotechnology , cancer research , nuclear receptor , immunology , gene , gene expression , transcription factor , transactivation , genetics
Microglia and astrocytes play essential roles in the maintenance of homeostasis within the central nervous system, but mechanisms that control the magnitude and duration of responses to infection and injury remain poorly understood. Here, we provide evidence that 5-androsten-3β,17β-diol (ADIOL) functions as a selective modulator of estrogen receptor (ER)β to suppress inflammatory responses of microglia and astrocytes. ADIOL and a subset of synthetic ERβ-specific ligands, but not 17β-estradiol, mediate recruitment of CtBP corepressor complexes to AP-1-dependent promoters, thereby repressing genes that amplify inflammatory responses and activate Th17 T cells. Reduction of ADIOL or ERβ expression results in exaggerated inflammatory responses to TLR4 agonists. Conversely, the administration of ADIOL or synthetic ERβ-specific ligands that promote CtBP recruitment prevents experimental autoimmune encephalomyelitis in an ERβ-dependent manner. These findings provide evidence for an ADIOL/ERβ/CtBP-transrepression pathway that regulates inflammatory responses in microglia and can be targeted by selective ERβ modulators.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom