z-logo
open-access-imgOpen Access
Principles and Strategies for Developing Network Models in Cancer
Author(s) -
Dana Pe’er,
Nir Hacohen
Publication year - 2011
Publication title -
cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 26.304
H-Index - 776
eISSN - 1097-4172
pISSN - 0092-8674
DOI - 10.1016/j.cell.2011.03.001
Subject(s) - biology , computer science , biological network , computational biology , drug discovery , genomics , big data , genome , bioinformatics , gene , data mining , genetics
The flood of genome-wide data generated by high-throughput technologies currently provides biologists with an unprecedented opportunity: to manipulate, query, and reconstruct functional molecular networks of cells. Here, we outline three underlying principles and six strategies to infer network models from genomic data. Then, using cancer as an example, we describe experimental and computational approaches to infer "differential" networks that can identify genes and processes driving disease phenotypes. In conclusion, we discuss how a network-level understanding of cancer can be used to predict drug response and guide therapeutics.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom