The Long Noncoding RNA, Jpx, Is a Molecular Switch for X Chromosome Inactivation
Author(s) -
Di Tian,
Sha Sun,
Jeannie T. Lee
Publication year - 2010
Publication title -
cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 26.304
H-Index - 776
eISSN - 1097-4172
pISSN - 0092-8674
DOI - 10.1016/j.cell.2010.09.049
Subject(s) - xist , x inactivation , biology , long non coding rna , non coding rna , repressor , rna , gene knockdown , genetics , x chromosome , gene , microbiology and biotechnology , gene expression
Once protein-coding, the X-inactivation center (Xic) is now dominated by large noncoding RNAs (ncRNA). X chromosome inactivation (XCI) equalizes gene expression between mammalian males and females by inactivating one X in female cells. XCI requires Xist, an ncRNA that coats the X and recruits Polycomb proteins. How Xist is controlled remains unclear but likely involves negative and positive regulators. For the active X, the antisense Tsix RNA is an established Xist repressor. For the inactive X, here, we identify Xic-encoded Jpx as an Xist activator. Jpx is developmentally regulated and accumulates during XCI. Deleting Jpx blocks XCI and is female lethal. Posttranscriptional Jpx knockdown recapitulates the knockout, and supplying Jpx in trans rescues lethality. Thus, Jpx is trans-acting and functions as ncRNA. Furthermore, ΔJpx is rescued by truncating Tsix, indicating an antagonistic relationship between the ncRNAs. We conclude that Xist is controlled by two RNA-based switches: Tsix for Xa and Jpx for Xi.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom