z-logo
open-access-imgOpen Access
A Myc Network Accounts for Similarities between Embryonic Stem and Cancer Cell Transcription Programs
Author(s) -
Jonghwan Kim,
Andrew J. Woo,
Jianlin Chu,
Jonathan W. Snow,
Yuko Fujiwara,
Chul Geun Kim,
Alan Cantor,
Stuart H. Orkin
Publication year - 2010
Publication title -
cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 26.304
H-Index - 776
eISSN - 1097-4172
pISSN - 0092-8674
DOI - 10.1016/j.cell.2010.09.010
Subject(s) - biology , embryonic stem cell , stem cell , transcription factor , genetics , transcription (linguistics) , computational biology , cancer research , microbiology and biotechnology , gene , linguistics , philosophy
c-Myc (Myc) is an important transcriptional regulator in embryonic stem (ES) cells, somatic cell reprogramming, and cancer. Here, we identify a Myc-centered regulatory network in ES cells by combining protein-protein and protein-DNA interaction studies and show that Myc interacts with the NuA4 complex, a regulator of ES cell identity. In combination with regulatory network information, we define three ES cell modules (Core, Polycomb, and Myc) and show that the modules are functionally separable, illustrating that the overall ES cell transcription program is composed of distinct units. With these modules as an analytical tool, we have reassessed the hypothesis linking an ES cell signature with cancer or cancer stem cells. We find that the Myc module, independent of the Core module, is active in various cancers and predicts cancer outcome. The apparent similarity of cancer and ES cell signatures reflects, in large part, the pervasive nature of Myc regulatory networks.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom