z-logo
open-access-imgOpen Access
Photoadaptation in Neurospora by Competitive Interaction of Activating and Inhibitory LOV Domains
Author(s) -
Erik Malzahn,
Stilianos Ciprianidis,
Krisztina Káldi,
Tobias Schafmeier,
Michael Brunner
Publication year - 2010
Publication title -
cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 26.304
H-Index - 776
eISSN - 1097-4172
pISSN - 0092-8674
DOI - 10.1016/j.cell.2010.08.010
Subject(s) - biology , transcription factor , circadian rhythm , neurospora , neurospora crassa , light intensity , white light , circadian clock , photoperiodism , botany , microbiology and biotechnology , endocrinology , genetics , mutant , gene , optics , physics
Light responses and photoadaptation of Neurospora depend on the photosensory light-oxygen-voltage (LOV) domains of the circadian transcription factor White Collar Complex (WCC) and its negative regulator VIVID (VVD). We found that light triggers LOV-mediated dimerization of the WCC. The activated WCC induces expression of VVD, which then disrupts and inactivates the WCC homodimers by the competitive formation of WCC-VVD heterodimers, leading to photoadaptation. During the day, expression levels of VVD correlate with light intensity, allowing photoadaptation over several orders of magnitude. At night, previously synthesized VVD serves as a molecular memory of the brightness of the preceding day and suppresses responses to light cues of lower intensity. We show that VVD is essential to discriminate between day and night, even in naturally ambiguous photoperiods with moonlight.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom