Basal Dynamics of p53 Reveal Transcriptionally Attenuated Pulses in Cycling Cells
Author(s) -
Alexander Loewer,
Eric Batchelor,
Giorgio Gaglia,
Galit Lahav
Publication year - 2010
Publication title -
cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 26.304
H-Index - 776
eISSN - 1097-4172
pISSN - 0092-8674
DOI - 10.1016/j.cell.2010.05.031
Subject(s) - biology , microbiology and biotechnology , dna damage , cell cycle , apoptosis , cell cycle checkpoint , suppressor , cell , dna repair , cell cycle protein , dna , genetics , gene
The tumor suppressor p53 is activated by stress and leads to cellular outcomes such as apoptosis and cell-cycle arrest. Its activation must be highly sensitive to ensure that cells react appropriately to damage. However, proliferating cells often encounter transient damage during normal growth, where cell-cycle arrest or apoptosis may be unfavorable. How does the p53 pathway achieve the right balance between high sensitivity and tolerance to intrinsic damage? Using quantitative time-lapse microscopy of individual human cells, we found that proliferating cells show spontaneous pulses of p53, which are triggered by an excitable mechanism during cell-cycle phases associated with intrinsic DNA damage. However, in the absence of sustained damage, posttranslational modifications keep p53 inactive, preventing it from inducing p21 expression and cell-cycle arrest. Our approach of quantifying basal dynamics in individual cells can now be used to study how other pathways in human cells achieve sensitivity in noisy environments.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom