z-logo
open-access-imgOpen Access
Aire's Partners in the Molecular Control of Immunological Tolerance
Author(s) -
Jakub Abramson,
Matthieu Giraud,
Christophe Benoist,
Diane Mathis
Publication year - 2010
Publication title -
cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 26.304
H-Index - 776
eISSN - 1097-4172
pISSN - 0092-8674
DOI - 10.1016/j.cell.2009.12.030
Subject(s) - biology , chromatin , rna splicing , gene knockdown , transcription (linguistics) , rna polymerase ii , microbiology and biotechnology , messenger rna , genetics , chromatin immunoprecipitation , transcription factor , ribonucleoprotein , rna , computational biology , dna , gene , gene expression , promoter , linguistics , philosophy
Aire induces the expression of a battery of peripheral-tissue self-antigens (PTAs) in thymic stromal cells, promoting the clonal deletion of differentiating T cells that recognize them. Just how Aire targets and induces PTA transcripts remains largely undefined. Screening via Aire-targeted coimmunoprecipitation followed by mass spectrometry, and validating by multiple RNAi-mediated knockdown approaches, we identified a large set of proteins that associate with Aire. They fall into four major functional classes: nuclear transport, chromatin binding/structure, transcription and pre-mRNA processing. One set of Aire interactions centered on DNA protein kinase and a group of proteins it partners with to resolve DNA double-stranded breaks or promote transcriptional elongation. Another set of interactions was focused on the pre-mRNA splicing and maturation machinery, potentially explaining the markedly more effective processing of PTA transcripts in the presence of Aire. These findings suggest a model to explain Aire's widespread targeting and induction of weakly transcribed chromatin regions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom