GPI Glycan Remodeling by PGAP5 Regulates Transport of GPI-Anchored Proteins from the ER to the Golgi
Author(s) -
Morihisa Fujita,
Yusuke Maeda,
Moonjin Ra,
Yoshiki Yamaguchi,
Ryo Taguchi,
Taroh Kinoshita
Publication year - 2009
Publication title -
cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 26.304
H-Index - 776
eISSN - 1097-4172
pISSN - 0092-8674
DOI - 10.1016/j.cell.2009.08.040
Subject(s) - endoplasmic reticulum , golgi apparatus , glycan , biology , microbiology and biotechnology , transport protein , secretory pathway , mutant , secretory protein , secretion , biochemistry , gene , glycoprotein
Many eukaryotic proteins are attached to the cell surface via glycosylphosphatidylinositol (GPI) anchors. How GPI-anchored proteins (GPI-APs) are trafficked from the endoplasmic reticulum (ER) to the cell surface is poorly understood, but the GPI moiety has been postulated to function as a signal for sorting and transport. Here, we established mutant cells that were selectively defective in transport of GPI-APs from the ER to the Golgi. We identified a responsible gene, designated PGAP5 (post-GPI-attachment to proteins 5). PGAP5 belongs to a dimetal-containing phosphoesterase family and catalyzed the remodeling of the glycan moiety on GPI-APs. PGAP5 catalytic activity is a prerequisite for the efficient exit of GPI-APs from the ER. Our data demonstrate that GPI glycan acts as an ER-exit signal and suggest that glycan remodeling mediated by PGAP5 regulates GPI-AP transport in the early secretory pathway.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom