Writing Memories with Light-Addressable Reinforcement Circuitry
Author(s) -
Adam ClaridgeChang,
Robert D. Roorda,
Eleftheria Vrontou,
Lucas Sjulson,
Haiyan Li,
Jay Hirsh,
Gero Miesenböck
Publication year - 2009
Publication title -
cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 26.304
H-Index - 776
eISSN - 1097-4172
pISSN - 0092-8674
DOI - 10.1016/j.cell.2009.08.034
Subject(s) - mushroom bodies , neuroscience , dopaminergic , biology , dopamine , postsynaptic potential , reinforcement , reinforcement learning , drosophila melanogaster , computer science , psychology , artificial intelligence , genetics , social psychology , receptor , gene
Dopaminergic neurons are thought to drive learning by signaling changes in the expectations of salient events, such as rewards or punishments. Olfactory conditioning in Drosophila requires direct dopamine action on intrinsic mushroom body neurons, the likely storage sites of olfactory memories. Neither the cellular sources of the conditioning dopamine nor its precise postsynaptic targets are known. By optically controlling genetically circumscribed subsets of dopaminergic neurons in the behaving fly, we have mapped the origin of aversive reinforcement signals to the PPL1 cluster of 12 dopaminergic cells. PPL1 projections target restricted domains in the vertical lobes and heel of the mushroom body. Artificially evoked activity in a small number of identifiable cells thus suffices for programming behaviorally meaningful memories. The delineation of core reinforcement circuitry is an essential first step in dissecting the neural mechanisms that compute and represent valuations, store associations, and guide actions.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom