z-logo
open-access-imgOpen Access
The Phosphatase SHP2 Regulates the Spacing Effect for Long-Term Memory Induction
Author(s) -
Mario Rafael Pagani,
Kimihiko Oishi,
Bruce D. Gelb,
Yi Zhong
Publication year - 2009
Publication title -
cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 26.304
H-Index - 776
eISSN - 1097-4172
pISSN - 0092-8674
DOI - 10.1016/j.cell.2009.08.033
Subject(s) - biology , phosphatase , protein tyrosine phosphatase , mushroom bodies , mapk/erk pathway , protein phosphatase 1 , microbiology and biotechnology , neuroscience , drosophila melanogaster , phosphorylation , genetics , gene
A property of long-term memory (LTM) induction is the requirement for repeated training sessions spaced over time. This augmentation of memory formation with spaced resting intervals is called the spacing effect. We now show that in Drosophila, the duration of resting intervals required for inducing LTM is regulated by activity levels of the protein tyrosine phosphatase corkscrew (CSW). Overexpression of wild-type CSW in mushroom body neurons shortens the inter-trial interval required for LTM induction, whereas overexpression of constitutively active CSW proteins prolongs these resting intervals. These gain-of-function csw mutations are associated with a clinical condition of mental retardation. Biochemical analysis reveals that LTM-inducing training regimens generate repetitive waves of CSW-dependent MAPK activation, the length of which appears to define the duration of the resting interval. Constitutively active CSW proteins prolong the resting interval by altering the MAPK inactivation cycle. We thus provide insight into the molecular basis of the spacing effect.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom