
Synthesized flavanoid-derived ligand reduced dengue virus type-2 replication in vitro
Author(s) -
Mudiana Muhamad,
Yean Kee Lee,
Noorsaadah Abd. Rahman,
Rohana Yusof
Publication year - 2017
Publication title -
asian pacific journal of tropical biomedicine/asian pacific journal of tropical biomedicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.507
H-Index - 61
eISSN - 2588-9222
pISSN - 2221-1691
DOI - 10.1016/j.apjtb.2016.10.013
Subject(s) - confocal microscopy , virus , viral replication , ligand (biochemistry) , dengue virus , biology , in vitro , virology , microtubule , tubulin , cell culture , microbiology and biotechnology , chemistry , receptor , biochemistry , genetics
Objective: To investigate the antiviral property of a lead ligand, YK51 that was synthesized based on the flavanoid of a natural product toward dengue virus type-2 (DENV2) replication.Methods: cRNA was isolated from HepG2 cells inoculated with 1000 median tissue culture infective dose of DENV2 and treated with different doses of the ligand followed by RT-PCR to quantify the virus gene copies. Confocal microscopy of actin and tubulin redistribution was also performed.Results: The quantitative RT-PCR result showed reduction of the DENV2 gene copies as the ligand concentration was increased. The confocal microscopy result showed increase in the tubulin intensity (79.6%) of infected BHK21 cells treated with the ligand, compared with the non-treated cells (54.8%). The 1.5-fold increase in the intensity of tubulin suggested that the ligand inhibitory effect stabilized the cellular microtubule structure.Conclusions: The synthesized ligand YK51 reduced DENV2 viral load by inhibiting virus replication thus is highly potential to be developed as antiviral agent