On the equationV n = w x 2 ∓ 1
Author(s) -
Ümmügülsüm Öğüt,
Refi̇k Keski̇n
Publication year - 2016
Publication title -
arab journal of mathematical sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.353
H-Index - 11
eISSN - 2588-9214
pISSN - 1319-5166
DOI - 10.1016/j.ajmsc.2016.06.004
Subject(s) - mathematics , integer (computer science) , sequence (biology) , scroll , algorithm , computer science , philosophy , theology , chemistry , biochemistry , programming language
Let P≥3 be an integer and (Vn) denote Lucas sequence of the second kind defined by V0=2,V1=P, and Vn+1=PVn−Vn−1 for n≥1. In this study, when P is odd and w∈{10,14,15,21,30,35,42,70,210}, we solved the equation Vn=wx2∓1. We showed that only V1 can be of the form wx2+1 and only V1 or V2 can be of the form wx2−1
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom