Premium
Phosphorylation of dynamin by ERK2 inhibits the dynamin‐microtubule interaction
Author(s) -
Earnest Svetlana,
Khokhlatchev Andrei,
Albanesi Joseph P.,
Barylko Barbara
Publication year - 1996
Publication title -
febs letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.593
H-Index - 257
eISSN - 1873-3468
pISSN - 0014-5793
DOI - 10.1016/0014-5793(96)01074-5
Subject(s) - dynamin , gtpase , phosphorylation , microtubule , microbiology and biotechnology , phosphatase , biology , biochemistry , chemistry , endocytosis , receptor
In the present study we show that purified bovine brain dynamin can be phosphorylated by MAP kinase, ERK2, with a stoichiometry of 1 mol phosphate/mol dynamin. The phosphorylated serine residue is located within the C‐terminal 10 kDa of dynamin. Dynamin I phosphorylated by ERK2 can be specifically dephosphorylated by calcineurin but not by protein phosphatase 2A (PP2A). Phosphorylation of dynamin by ERK2 weakens the binding of dynamin to microtubules and inhibits dynamin's microtubule‐activated GTPase activity. Stimulation of GTPase activity by either Grb2 or phospholipids was not affected by ERK2 phosphorylation, suggesting that the binding sites for Grb2 and phospholipids do not overlap with that for microtubules.