
Fimbristylis ovata extract and its ability to encounter AGEs-induced neurotoxicity in SH-SY5Y
Author(s) -
Suphasarang Sirirattanakul,
Rachana Santiyat
Publication year - 2021
Publication title -
toxicological research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.872
H-Index - 30
eISSN - 2234-2753
pISSN - 1976-8257
DOI - 10.1007/s43188-020-00072-z
Subject(s) - rage (emotion) , oxidative stress , sh sy5y , glycation , neurotoxicity , tumor necrosis factor alpha , chemistry , pharmacology , receptor , cytokine , phytochemical , medicine , biochemistry , toxicity , biology , cell culture , neuroblastoma , neuroscience , genetics
Advanced glycation end products (AGEs) upon binding to its receptor (receptor for AGEs, RAGE) trigger several pathological processes involving oxidative stress and inflammatory pathway which play a pivotal role in various degenerative diseases including Alzheimer's disease. Fimbristylis ovata ( F. ovata ) has long been reported to be used as a traditional herbal medicine; nonetheless, very few studies have been reported. In this study, the protective effects of F. ovata extract on neurotoxicity of hippocampal neuronal cells (SH-SY5Y) was investigated. When compared to normal control, AGEs treatment significantly induced oxidative stress level and enhanced NF-κB translocation to nucleus in the neuronal cells ( p < 0.05). The increase in NF-κB translocation leads to increase in transcription level of the target genes including RAGE and pro-inflammatory cytokines which include interleukin 1 beta (IL1B), tumor necrosis factor-alpha (TNFA) and interleukin 6 (IL6). Pre-treatment of SH-SY5Y with the extracts of F. ovata shows favorable results by significantly suppressing oxidative stress level ( p < 0.05) as well transcriptional level of RAGE ( p < 0.05) and pro-inflammatory cytokines ( p < 0.05). Chemical analysis of F. ovata extracts using High Resolution Liquid Chromatograph Mass Spectrometer (HR-LCMS) and Gas Chromatograph with high resolution Mass Spectrometer (GC-HRMS) suggested some potential active phytochemical compounds. The results from this study may provide possible alternative treatment for prevention and/or therapy of neurodegenerative disorders by targeting the above-mentioned pathways. The role of the phytochemical active ingredient (s) in inhibiting the AGEs-triggered signaling inflammatory pathway should be investigated in future study.