z-logo
open-access-imgOpen Access
Diatraea saccharalis harbors microorganisms that can affect growth of sugarcane stalk-dwelling fungi
Author(s) -
Larissa Chariel Domingos da Silva,
Francisco Inácio Paiva Ferreira,
Laís Augusto Dezoti,
Caroline Thamara Nascimento,
Caroline Orikasa,
Marco Aurélio Takita,
Ane Hackbart Medeiros
Publication year - 2021
Publication title -
brazilian journal of microbiology
Language(s) - English
Resource type - Journals
eISSN - 1678-4405
pISSN - 1517-8382
DOI - 10.1007/s42770-021-00647-4
Subject(s) - diatraea saccharalis , biology , botany , fusarium , crambidae , horticulture , yeast , microorganism , biological pest control , pest analysis , bacteria , genetics
Diatraea saccharalis (Fabricius, 1794) (Lepidoptera: Crambidae), the sugarcane borer, spends most of its life cycle inside the galleries it burrows into sugarcane stalk, where two rot-causing fungi Colletotrichum falcatum (Went, 1893) and Fusarium verticillioides (Nirenberg, 1976) are commonly found. Results have shown that microbiota harbored by D. saccharalis inhibits the growth of F. verticillioides and C. falcatum. D. saccharalis larvae were collected from chemical-free field plants, and yeast and bacteria from third and fourth-instar D. saccharalis regurgitate were isolated onto appropriate media. The percentage of F. verticillioides and C. falcatum mycelial growth inhibition was recorded. Out of 32 yeast isolates, 9 exerted 30 to 40% growth inhibition of C. falcatum or F. verticillioides. When 24 bacterial isolates were confronted with rot-causing fungi, six inhibited C. falcatum growth by 30 to 60%, and 24 isolates inhibited 30 to 60% of F. verticillioides growth. Bacteria and yeast isolates were identified through DNA sequencing of part of 16S rDNA and part of ITS1-5.8S-ITS2, respectively, revealing an abundance of isolates with sequence similarity to Klebsiella and Bacillus and Meyerozyma, which have been used as biological control agents and their ability to promote plant growth has been demonstrated. We have shown that microorganisms from borer regurgitate inhibit phytopathogen growth in vitro. Still, further investigation of the possible functions of D. saccharalis-associated microorganisms may help understand their ecological role in plant-insect-phytopathogen interaction.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here