z-logo
open-access-imgOpen Access
Evaluation of two transformation protocols and screening of positive plasmid introduction into Bacillus cereus EB2, a gram-positive bacterium using qualitative analyses
Author(s) -
Salwa Abdullah Sirajuddin,
Shamala Sundram
Publication year - 2020
Publication title -
brazilian journal of microbiology
Language(s) - English
Resource type - Journals
eISSN - 1678-4405
pISSN - 1517-8382
DOI - 10.1007/s42770-020-00241-0
Subject(s) - plasmid , transformation (genetics) , bacteria , kanamycin , microbiology and biotechnology , bacillus cereus , biology , plasmid preparation , cereus , gram positive bacteria , gram negative bacteria , transformation efficiency , dna , gene , escherichia coli , agrobacterium , biochemistry , genetics , pbr322
Both Gram-positive and Gram-negative bacteria can take up exogenous DNA when they are in a competent state either naturally or artificially. However, the thick peptidoglycan layer in Gram-positive bacteria's cell wall is considered as a possible barrier to DNA uptake. In the present work, two transformation techniques have been evaluated in assessing the protocol's ability to introduce foreign DNA, pBBRGFP-45 plasmid which harbors kanamycin resistance and green fluorescent protein (GFP) genes into a Gram-positive bacterium, Bacillus cereus EB2. B. cereus EB2 is an endophytic bacterium, isolated from oil palm roots. A Gram-negative bacterium, Pseudomonas aeruginosa EB35 was used as a control sample for both transformation protocols. The cells were made competent using respective chemical treatment to Gram-positive and Gram-negative bacteria, and kanamycin concentration in the selective medium was also optimized. Preliminary findings using qualitative analysis of colony polymerase chain reaction (PCR)-GFP indicated that the putative positive transformants for B. cereus EB2 were acquired using the second transformation protocol. The positive transformants were then verified using molecular techniques such as observation of putative colonies on specific media under UV light, plasmid extraction, and validation analyses, followed by fluorescence microscopy. Conversely, both transformation protocols were relatively effective for introduction of plasmid DNA into P. aeruginosa EB35. Therefore, this finding demonstrated the potential of chemically prepared competent cells and the crucial step of heat-shock in foreign DNA transformation process of Gram-positive bacterium namely B. cereus was required for successful transformation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here