
Learning and memory disorders related to hippocampal inflammation following exposure to air pollution
Author(s) -
Mojtaba Ehsanifar,
Ahmad Jonidi Jafari,
Zeinab Montazeri,
Roshanak Rezaei Kalantari,
Mitra Gholami,
Azadeh Ashtarinezhad
Publication year - 2021
Publication title -
journal of environmental health science and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 45
ISSN - 2052-336X
DOI - 10.1007/s40201-020-00600-x
Subject(s) - morris water navigation task , oxidative stress , malondialdehyde , neuroinflammation , hippocampus , inflammation , elevated plus maze , endocrinology , nmda receptor , medicine , hippocampal formation , receptor , chemistry , anxiety , psychiatry
It has been demonstrated that sub-chronic exposure to air pollution containing nanoscale (˂100 nm) diesel exhaust particles (DEPs) may lead to excessive oxidative stress and neuro-inflammation in adult male mice. Hereby, we investigated the effects of DEPs on hippocampus-dependent spatial learning and neuro-inflammation and memory-related gene expression in male mice. In this study, we divided 48 adult NMRI male mice into control group VS. three exposure groups. Mice were exposed to 300-350 μg/m 3 DEPs for 2, 5, and 7 h daily for 12 weeks. The Morris Water Maze (MWM) and Elevated Plus Maze device were used to examine anxiety, spatial memory and learning, respectively. The mRNAs expression of pro-inflammatory cytokines, N-methyl-D-aspartate (NMDA) receptor subunits, and glutaminase were studied in hippocampus (HI) by real-time RT-PCR. Besides, malondialdehyde (MDA) tests were used to determine the state of oxidative stress. After 5 and 7 h. of DEPs exposure, mRNA expression of NR2A and NR3B IL1α, IL1β, TNFα, NMDA receptor subunits and MDA levels increased significantly ( P < 0.05). Also, DEPs exposed mice for 2, 5, and 7 h. showed diminished entrance into open arms with short time spent there. Indeed, 5 and 7 h/day exposed mice required a longer time to reach the hidden platform. Sub-chronic exposure to DEPs increased oxidative stress markers, neuroinflammation, anxiety, impaired spatial learning and memory.