
Targeted genome editing, an alternative tool for trait improvement in horticultural crops
Author(s) -
Saminathan Subburaj,
Luhua Tu,
Yong-Tae Jin,
Sangsu Bae,
Pil Joon Seo,
Yu Jin Jung,
Geung–Joo Lee
Publication year - 2016
Publication title -
horticulture, environment and biotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.565
H-Index - 24
eISSN - 2211-3460
pISSN - 2211-3452
DOI - 10.1007/s13580-016-0281-8
Subject(s) - transcription activator like effector nuclease , genome editing , zinc finger nuclease , crispr , microbiology and biotechnology , biology , molecular breeding , computational biology , genetics , gene
Improving crops through plant breeding, an important approach for sustainable agriculture, has been utilized to increase the yield and quality of foods and other biomaterials for human use. Crops, including cereals, vegetables, ornamental flowers, fruits, and trees, have long been cultivated to produce high-quality products for human consumption. Conventional breeding technologies, such as natural cross-hybridization, mutation induction through physical or chemical mutagenesis, and modern transgenic tools are often used to enhance crop production. However, these breeding methods are sometimes laborious and complicated, especially when attempting to improve desired traits without inducing pleiotropic effects. Recently, targeted genome editing (TGE) technology using engineered nucleases, including meganucleases, zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeat (CRISPR) nucleases, has been used to improve the traits of economically important plants. TGE has emerged as a novel plant-breeding tool that represents an alternative approach to classical breeding, but with higher mutagenic efficiency. Here, we briefly describe the basic principles of TGE and the types of engineered nucleases utilized, along with their advantages and disadvantages. We also discuss their potential use to improve the traits of horticultural crops through genome engineering.